Sciweavers

BMCBI
2006

CoXpress: differential co-expression in gene expression data

13 years 11 months ago
CoXpress: differential co-expression in gene expression data
Background: Traditional methods of analysing gene expression data often include a statistical test to find differentially expressed genes, or use of a clustering algorithm to find groups of genes that behave similarly across a dataset. However, these methods may miss groups of genes which form differential co-expression patterns under different subsets of experimental conditions. Here we describe coXpress, an R package that allows researchers to identify groups of genes that are differentially co-expressed. Results: We have developed coXpress as a means of identifying groups of genes that are differentially co-expressed. The utility of coXpress is demonstrated using two publicly available microarray datasets. Our software identifies several groups of genes that are highly correlated under one set of biologically related experiments, but which show little or no correlation in a second set of experiments. The software uses a re-sampling method to calculate a p-value for each group, and ...
Michael Watson
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2006
Where BMCBI
Authors Michael Watson
Comments (0)