Background: The genomic information of a species allows for the genome-scale reconstruction of its metabolic capacity. Such a metabolic reconstruction gives support to metabolic engineering, but also to integrative bioinformatics and visualization. Sequence-based automatic reconstructions require extensive manual curation, which can be very time-consuming. Therefore, we present a method to accelerate the time-consuming process of network reconstruction for a query species. The method exploits the availability of well-curated metabolic networks and uses high-resolution predictions of gene equivalency between species, allowing the transfer of gene-reaction associations from curated networks. Results: We have evaluated the method using Lactococcus lactis IL1403, for which a genome-scale metabolic network was published recently. We recovered most of the gene-reaction associations (i.e. 74
Richard A. Notebaart, Frank H. J. van Enckevort, C