Background: Staphylococcus aureus is a human pathogen that causes a wide variety of lifethreatening infections using a large number of virulence factors. One of the major global regulators used by S. aureus is the staphylococcal accessory regulator (sarA). We have identified and characterized a new gene (modulator of sarA: msa) that modulates the expression of sarA. Genetic and functional analysis shows that msa has a global effect on gene expression in S. aureus. However, the mechanism of Msa function is still unknown. Function predictions of Msa are complicated by the fact that it does not have a homologous partner in any other organism. This work aims at predicting the structure and function of the Msa protein. Results: Preliminary sequence analysis showed that Msa is a putative membrane protein. It would therefore be very difficult to purify and crystallize Msa in order to acquire structure information about this protein. We have used several computational tools to predict the phy...
Vijayaraj Nagarajan, Mohamed O. Elasri