We present an approach to path planning for humanoid robots that computes dynamically-stable, collision-free trajectories from full-body posture goals. Given a geometric model of the environment and a statically-stable desired posture, we search the configuration space of the robot for a collision-free path that simultaneously satisfies dynamic balance constraints. We adapt existing randomized path planning techniques by imposing balance constraints on incremental search motions in order to maintain the overall dynamic stability of the final path. A dynamics filtering function that constrains the ZMP (zero moment point) trajectory is used as a post-processing step to transform statically-stable, collision-free paths into dynamically-stable, collision-free trajectories for the entire body. Although we have focused our experiments on biped robots with a humanoid shape, the method generally applies to any robot subject to balance constraints (legged or not). The algorithm is presented alo...
James J. Kuffner Jr., Satoshi Kagami, Koichi Nishi