Sciweavers

CORR
2002
Springer

Data Engineering for the Analysis of Semiconductor Manufacturing Data

13 years 11 months ago
Data Engineering for the Analysis of Semiconductor Manufacturing Data
We have analyzed manufacturing data from several different semiconductor manufacturing plants, using decision tree induction software called Q-YIELD. The software generates rules for predicting when a given product should be rejected. The rules are intended to help the process engineers improve the yield of the product, by helping them to discover the causes of rejection. Experience with Q-YIELD has taught us the importance of data engineering -- preprocessing the data to enable or facilitate decision tree induction. This paper discusses some of the data engineering problems we have encountered with semiconductor manufacturing data. The paper deals with two broad classes of problems: engineering the features in a feature vector representation and engineering the definition of the target concept (the classes). Manufacturing process data present special problems for feature engineering, since the data have multiple levels of granularity (detail, resolution). Engineering the target conce...
Peter D. Turney
Added 18 Dec 2010
Updated 18 Dec 2010
Type Journal
Year 2002
Where CORR
Authors Peter D. Turney
Comments (0)