The vast majority of work on word senses has relied on predefined sense inventories and an annotation schema where each word instance is tagged with the best fitting sense. This paper examines the case for a graded notion of word meaning in two experiments, one which uses WordNet senses in a graded fashion, contrasted with the "winner takes all" annotation, and one which asks annotators to judge the similarity of two usages. We find that the graded responses correlate with annotations from previous datasets, but sense assignments are used in a way that weakens the case for clear cut sense boundaries. The responses from both experiments correlate with the overlap of paraphrases from the English lexical substitution task which bodes well for the use of substitutes as a proxy for word sense. This paper also provides two novel datasets which can be used for evaluating computational systems.