Topology virtualization techniques are proposed for NoCbased many-core processors with core-level redundancy to isolate hardware changes caused by on-chip defective cores. Prior work focuses on homogeneous cores with symmetric performance and optimizes on-chip communication only. However, core-to-core performance asymmetry due to manufacturing process variations poses new challenges for constructing virtual topologies. Lower performance cores may scatter over a virtual topology, while operating systems typically allocate tasks to continuous cores. As a result, parallel applications are probably assigned to a region containing many slower cores that become bottlenecks. To tackle the above problem, in this paper we present a novel performance-asymmetry-aware reconfiguration algorithm Bubble-Up based on a new metric called core fragmentation factor (CFF). Bubble-Up can arrange cores with similar performance closer, yet maintaining reasonable hop distances between virtual neighbors, thus ...