New tendencies envisage 2D/3D Multi-Processor System-On-Chip (MPSoC) as a promising solution for the consumer electronics market. MPSoCs are complex to design, as they must execute multiple applications (games, video), while meeting additional design constraints (energy consumption, time-to-market, etc.). Moreover, the rise of temperature in the die for MPSoCs, especially for forthcoming 3D chips, can seriously affect their final performance and reliability. In this context, transient thermal modeling is a key challenge to study the accelerated thermal problems of MPSoC designs, as well as to validate the benefits of active cooling techniques (e.g., liquid cooling), combined with other state-of-the-art methods (e.g., dynamic frequency and voltage scaling), as a solution to overcome run-time thermal runaway. In this paper, I present a novel approach for fast transient thermal modeling and analysis of 2D/3D MPSoCs with active cooling, which relies on the exploitation of combined hardware...