Serial transcriptomics experiments investigate the dynamics of gene expression changes associated with a quantitative variable such as time or dosage. The statistical analysis of these data implies the study of global and gene-specific expression trends, the identification of significant serial changes, the comparison of expression profiles and the assessment of transcriptional changes in terms of cellular processes. We have created the SEA (Serial Expression Analysis) suite to provide a complete web-based resource for the analysis of serial transcriptomics data. SEA offers five different algorithms based on univariate, multivariate and functional profiling strategies framed within a user-friendly interface and a projectoriented architecture to facilitate the analysis of serial gene expression data sets from different perspectives. SEA is available at sea.bioinfo.cipf.es.