Abstract This paper explores the impact that landmark parametrization has in the performance of monocular, EKFbased, 6-DOF simultaneous localization and mapping (SLAM) in the context of undelayed landmark initialization. Undelayed initialization in monocular SLAM challenges EKF because of the combination of non-linearity with the large uncertainty associated with the unmeasured degrees of freedom. In the EKF context, the goal of a good landmark parametrization is to improve the model’s linearity as much as possible, improving the filter consistency, achieving robuster and more accurate localization and mapping. This work compares the performances of eight different landmark parametrizations: three for points and five for straight lines. It highlights and justifies the keys for satisfactory operation: the use of parameters behaving proportionally to inverse-distance, and landmark anchoring. A unified EKF-SLAM framework is formulated as a benchmark for points and lines that is inde...
Joan Solà, Teresa A. Vidal-Calleja, Javier