Statistical static timing analysis (SSTA) has become a key method for analyzing the effect of process variation in aggressively scaled CMOS technologies. Much research has focused on the modeling of spatial correlation in SSTA. However, the vast majority of these works used artificially generated process data to test the proposed models. Hence, it is difficult to determine the actual effectiveness of these methods, the conditions under which they are necessary, and whether they lead to a significant increase in accuracy that warrants their increased runtime and complexity. In this paper, we study 5 different correlation models and their associated SSTA methods using 35420 critical dimension (CD) measurements that were extracted from 23 reticles on 5 wafers in a 130nm CMOS process. Based on the measured CD data, we analyze the correlation as a function of distance and generate 5 distinct correlation models, ranging from simple models which incorporate one or two variation components to...