Abstract— This paper describes our successful implementation of a robot that autonomously and strategically removes multiple blocks from an unstable Jenga tower. We present an integrated strategy for perception, planning and control that achieves repeatable performance in this challenging physical domain. In contrast to previous implementations, we rely only on low-cost, readily available system components and use strategic algorithms to resolve system uncertainty. We present a three-stage planner for block extraction which considers block selection, extraction order, and physics-based simulation that evaluates removability. Existing vision techniques are combined in a novel sequence for the identification and tracking of blocks within the tower. Discussion of our approach is presented following experimental results on a 5-DOF robot manipulator.