Abstract— Autonomous estimation of the altitude of an Unmanned Aerial Vehicle (UAV) is extremely important when dealing with flight maneuvers like landing, steady flight, etc. Vision based techniques for solving this problem have been underutilized. In this paper, we propose a new algorithm to estimate the altitude of a UAV from top-down aerial images taken from a single on-board camera. We use a semi-supervised machine learning approach to solve the problem. The basic idea of our technique is to learn the mapping between the texture information contained in an image to a possible altitude value. We learn an over complete sparse basis set from a corpus of unlabeled images capturing the texture variations. This is followed by regression of this basis set against a training set of altitudes. Finally, a spatio-temporal Markov Random Field is modeled over the altitudes in test images, which is maximized over the posterior distribution using the MAP estimate by solving a quadratic optim...