— Given an initial set of a nonlinear system with uncertain parameters and inputs, the set of states that can possibly be reached is computed. The approach is based on local linearizations of the nonlinear system, while linearization errors are considered by Lagrange remainders. These errors are added as uncertain inputs, such that the reachable set of the locally linearized system encloses the one of the original system. The linearization error is controlled by splitting of reachable sets. Reachable sets are represented by zonotopes, allowing an efficient computation in relatively high-dimensional space.