Sciweavers

ICRA
2007
IEEE

A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation

14 years 6 months ago
A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation
— In this paper, we present an Extended Kalman Filter (EKF)-based algorithm for real-time vision-aided inertial navigation. The primary contribution of this work is the derivation of a measurement model that is able to express the geometric constraints that arise when a static feature is observed from multiple camera poses. This measurement model does not require including the 3D feature position in the state vector of the EKF and is optimal, up to linearization errors. The vision-aided inertial navigation algorithm we propose has computational complexity only linear in the number of features, and is capable of high-precision pose estimation in large-scale real-world environments. The performance of the algorithm is demonstrated in extensive experimental results, involving a camera/IMU system localizing within an urban area.
Anastasios I. Mourikis, Stergios I. Roumeliotis
Added 03 Jun 2010
Updated 03 Jun 2010
Type Conference
Year 2007
Where ICRA
Authors Anastasios I. Mourikis, Stergios I. Roumeliotis
Comments (0)