– This paper presents two actuation compensation methods for a snake-like robot implementing multi flexible backbones and actuation redundancy. This snake-like robot is designed for distal dexterity enhancement in MIS surgery of the throat. Actuation compensation is required to account for the flexibility of the actuation lines that connect this snake-like robot with its remote actuation units. The paper presents both a naive model-based compensation approach and a combined modelbased recursive linear-estimation approach that uses data gathered from external measurements of the snake-like unit configuration such as vision. The kinematic and static model of this multi-backbone snake-like unit is reviewed and a simplified redundancy resolution is implemented in the error compensation model. The results show that the performance of the snake-like unit is significantly improved when compensation is implemented. The combined model-based recursive linear estimation method showed 1 accuracy...