Background: Molecular characterization has contributed to the understanding of the inception, progression, treatment and prognosis of cancer. Nucleic acid array-based technologies extend molecular characterization of tumors to thousands of gene products. To effectively discriminate between tumor sub-types, reliable laboratory techniques and analytic methods are required. Results: We derived mRNA expression profiles from 21 human tissue samples (eight normal kidneys and 13 kidney tumors) and two pooled samples using the Affymetrix GeneChip platform. A panel of ten clustering algorithms combined with four data pre-processing methods identified a consensus cluster dendrogram in 18 of 40 analyses and of these 16 used a logarithmic transformation. Within the consensus dendrogram the expression profiles of the samples grouped according to tissue type; clear cell and chromophobe carcinomas displayed distinctly different gene expression patterns. By using a rigorous statistical selection base...
Michael A. Gieseg, Theresa Cody, Michael Z. Man, S