—Escalating system-on-chip design complexity is the design community to raise the level of abstraction beyond register transfer level. Despite the unsuccessful adoptions of early generations of commercial high-level synthesis (HLS) systems, we believe that the tipping point for transitioning to HLS methodology is happening now, especially for field-programmable gate array (FPGA) designs. The latest generation of HLS tools has made significant progress in providing wide language coverage and robust compilation technology, platform-based modeling, advancement in core HLS algorithms, and a domain-specific approach. In this paper, we use AutoESL’s AutoPilot HLS tool coupled with domain-specific system-level implementation platforms developed by Xilinx as an example to demonstrate the effectiveness of state-of-art C-to-FPGA synthesis solutions targeting multiple application domains. Complex industrial designs targeting Xilinx FPGAs are also presented as case studies, including compa...