In this paper, we present a system synthesis algorithm, called MOCSYN, which partitions and schedules embedded system specifications to intellectual property cores in an integrated circuit. Given a system specification consisting of multiple periodic task graphs as well as a database of core and integrated circuit characteristics, MOCSYN synthesizes real-time heterogeneous single-chip hardware-software architectures using an adaptive multiobjective genetic algorithm that is designed to escape local minima. The use of multiobjective optimization allows a single system synthesis run to produce multiple designs which trade off different architectural features. Integrated circuit price, power consumption, and area are optimized under hard real-time constraints. MOCSYN differs from previous work by considering problems unique to single-chip systems. It solves the problem of providing clock signals to cores composing a system-on-a-chip. It produces a bus structure which balances ease of lay...
Robert P. Dick, Niraj K. Jha