Modern processors and SoCs require the adoption of poweroriented design styles, due to the implications that power consumption may have on reliability, cost and manufacturability of integrated circuits featuring nanometric technologies. And the power problem is further exacerbated by the increasing demand of devices for mobile, battery-operated systems, for which reduced power dissipation is mandatory. A large fraction of the power consumed by a synchronous circuit is due to the clock distribution network. This is for two reasons: First, the clock nets are long and heavily loaded. Second, they are subject to a high switching activity. The problem of automatically synthesizing a power efficient clock tree has been addressed recently in a few research contributions. In this paper, we introduce a methodology in which low-power clock trees are obtained through aggressive exploitation of the clock-gating technology. Distinguishing features of the methodology are: (i) The capability of calc...