In this paper we propose a RObust Analog Design tool (ROAD) for post-tuning analog/RF circuits. Starting from an initial design derived from hand analysis or analog circuit synthesis based on simplified models, ROAD extracts accurate posynomial performance models via transistor-level simulation and optimizes the circuit by geometric programming. Importantly, ROAD sets up all design constraints to include large-scale process variations to facilitate the tradeoff between yield and performance. A novel convex formulation of the robust design problem is utilized to improve the optimization efficiency and to produce a solution that is superior to other local tuning methods. In addition, a novel projection-based approach for posynomial fitting is used to facilitate scaling to large problem sizes. A new implicit power iteration algorithm is proposed to find the optimal projection space and extract the posynomial coefficients with robust convergence. The efficacy of ROAD is demonstrated on se...