— When industrial robot arms are controlled using sensor data the performance is dependent on the sensor sampling rate, on delays in signal processing, and on the robot dynamics. The paper presents an approach in which control is inherently stable as long as the time instant of sensing is known, independently of delays. In addition to sensor data the method uses the actual robot pose to compute a desired pose which is then controlled by the existing positional control loop. Updated sensor data affect the system as a refined target for positional control. So the positional control and the use of sensor data are decoupled. This is useful for the integration of a priori information on the task. The method is applicable especially for force control tasks as contour following and for visual servoing.