Process variations in integrated circuits have significant impact on their performance, leakage and stability. This is particularly evident in large, regular and dense structures such as DRAMs. DRAMs are built using minimized transistors with presumably uniform speed in an organized array structure. Process variation can introduce latency disparity among different memory arrays. With the proliferation of 3D stacking technology, DRAMs become a favorable choice for stacking on top of a multicore processor as a last level cache for large capacity, high bandwidth, and low power. Hence, variations in bank speed creates a unique problem of non-uniform cache accesses in 3D space. In this paper, we investigate cache management techniques for tolerating process variation in a 3D DRAM stacked onto a multicore processor. We modeled the process variation in a 4-layer DRAM memory to characterize the latency variations among different banks. As a result, the notion of fast and slow banks from th...