The impact of power supply integrity on a design has become a critical issue, not only for functional verification, but also for performance verification. Traditional analysis has typically applied a worst case voltage drop at all points along a circuit path which leads to a very conservative analysis. We also show that in certain cases, the traditional analysis can be optimistic, since it ignores the possibility of voltage shifts between driver and receiver gates. In this paper, we propose a new analysis approach for computing the maximum path delay under power supply fluctuations. Our analysis is based on the use of superposition, both spatially across different circuit blocks, and temporally in time. We first present an accurate model of path delay variations under supply drops, considering both the effect of local supply reduction at individual gates and voltage shifts between driver/receiver pairs. We then formulate the path delay maximization problem as a constrained linear opti...