Sciweavers

28 search results - page 2 / 6
» Counting Plane Graphs: Flippability and its Applications
Sort
View
SODA
2007
ACM
76views Algorithms» more  SODA 2007»
14 years 8 days ago
An unbiased pointing operator for unlabeled structures, with applications to counting and sampling
We introduce a general method to count and randomly sample unlabeled combinatorial structures. The approach is based on pointing unlabeled structures in an “unbiased” way, i.e...
Manuel Bodirsky, Éric Fusy, Mihyun Kang, St...
GD
2005
Springer
14 years 4 months ago
Odd Crossing Number Is Not Crossing Number
The crossing number of a graph is the minimum number of edge intersections in a plane drawing of a graph, where each intersection is counted separately. If instead we count the nu...
Michael J. Pelsmajer, Marcus Schaefer, Daniel Stef...
DMTCS
2010
125views Mathematics» more  DMTCS 2010»
13 years 8 months ago
Binary Labelings for Plane Quadrangulations and their Relatives
Motivated by the bijection between Schnyder labelings of a plane triangulation and partitions of its inner edges into three trees, we look for binary labelings for quadrangulation...
Stefan Felsner, Clemens Huemer, Sarah Kappes, Davi...
KDD
2009
ACM
204views Data Mining» more  KDD 2009»
14 years 11 months ago
DOULION: counting triangles in massive graphs with a coin
Counting the number of triangles in a graph is a beautiful algorithmic problem which has gained importance over the last years due to its significant role in complex network analy...
Charalampos E. Tsourakakis, U. Kang, Gary L. Mille...
COMPGEOM
2005
ACM
14 years 24 days ago
The Visibility-Voronoi Complex and Its Applications
We introduce a new type of diagram called the VV(c)-diagram (the visibility–Voronoi diagram for clearance c), which is a hybrid between the visibility graph and the Voronoi diag...
Ron Wein, Jur P. van den Berg, Dan Halperin