Sciweavers

WINE
2005
Springer

Click Fraud Resistant Methods for Learning Click-Through Rates

14 years 6 months ago
Click Fraud Resistant Methods for Learning Click-Through Rates
Abstract. In pay-per-click online advertising systems like Google, Overture, or MSN, advertisers are charged for their ads only when a user clicks on the ad. While these systems have many advantages over other methods of selling online ads, they suffer from one major drawback. They are highly susceptible to a particular style of fraudulent attack called click fraud. Click fraud happens when an advertiser or service provider generates clicks on an ad with the sole intent of increasing the payment of the advertiser. Leaders in the pay-per-click marketplace have identified click fraud as the most significant threat to their business model. We demonstrate that a particular class of learning algorithms, called clickbased algorithms, are resistant to click fraud in some sense. We focus on a simple situation in which there is just one ad slot, and show that fraudulent clicks can not increase the expected payment per impression by more than o(1) in a click-based algorithm. Conversely, we sh...
Nicole Immorlica, Kamal Jain, Mohammad Mahdian, Ku
Added 28 Jun 2010
Updated 28 Jun 2010
Type Conference
Year 2005
Where WINE
Authors Nicole Immorlica, Kamal Jain, Mohammad Mahdian, Kunal Talwar
Comments (0)