High performance architectures depend heavily on efficient multi-level memory hierarchies to minimize the cost of accessing data. This dependence will increase with the expected increases in relative distance to main memory. There have been a number of published proposals for cache conflict-avoidance schemes. In this paper we investigate the design and performance of conflict-avoiding cache architectures based on polynomial modulus functions, which earlier research has shown to be highly effective at reducing conflict miss ratios. We examine a number of practical implementation issues and present experimental evidence to support the claim that pseudo-randomly indexed caches are both effective in performance terms and practical from an implementation viewpoint.
Nigel P. Topham, Antonio González, Jos&eacu