Sciweavers

CDC
2008
IEEE

Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions

14 years 1 months ago
Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions
Abstract— We study asymptotic stability of an infinite dimensional system that switches between a finite set of modes. Each mode is governed by a system of one-dimensional, linear, hyperbolic partial differential equations on a bounded space interval. The switching system is fairly general in that the space dependent system matrix functions as well as the boundary conditions may switch in time. For the case in which the switching occurs between subsystems in canonical diagonal form, we provide two sets of sufficient conditions for asymptotic stability under arbitrary switching signals. These results are direct generalizations of the corresponding results for the unswitched case. Furthermore, we provide an explicit dwelltime bound on the switching signals that guarantee asymptotic stability of the switched system under the assumption that each of the subsystems are stable. Our results of stability under arbitrary switching generalize to the case where switching occurs between non-d...
Saurabh Amin, Falk M. Hante, Alexandre M. Bayen
Added 08 Nov 2010
Updated 08 Nov 2010
Type Conference
Year 2008
Where CDC
Authors Saurabh Amin, Falk M. Hante, Alexandre M. Bayen
Comments (0)