Sciweavers

TROB
2008

Online Optimization of Swimming and Crawling in an Amphibious Snake Robot

14 years 14 days ago
Online Optimization of Swimming and Crawling in an Amphibious Snake Robot
An important problem in the control of locomotion of robots with multiple degrees of freedom (e.g., biomimetic robots) is to adapt the locomotor patterns to the properties of the environment. This article addresses this problem for the locomotion of an amphibious snake robot, and aims at identifying fast swimming and crawling gaits for a variety of environments. Our approach uses a locomotion controller based on the biological concept of central pattern generators (CPGs) together with a gradient-free optimization method, Powell's method. A key aspect of our approach is that the gaits are optimized online, i.e., while moving, rather than as an off-line optimization process. We present various experiments with the real robot and in simulation: swimming, crawling on horizontal ground, and crawling on slopes. For each of these different situations, the optimized gaits are compared with the results of systematic explorations of the parameter space. The main outcomes of the experiments ...
Alessandro Crespi, Auke Jan Ijspeert
Added 15 Dec 2010
Updated 15 Dec 2010
Type Journal
Year 2008
Where TROB
Authors Alessandro Crespi, Auke Jan Ijspeert
Comments (0)