: This paper proposes a pipelined, systolic architecture for two- dimensional discrete Fourier transform computation which is highly concurrent. The architecture consists of two, one-dimensional discrete Fourier transform blocks connected via an intermediate buffer. The proposed architecture offers low latency as well as high throughput and can perform both oneand two- dimensional discrete Fourier transforms. The architecture supports transform length that is not power of two and not based on products of co-prime numbers. The simulation and synthesis were carried out using Cadence tools, NcSim and RTL Compiler, respectively, with 180 nm libraries.