Abstract— Collecting grasp data for learning and benchmarking purposes is very expensive. It would be helpful to have a standard database of graspable objects, along with a set of stable grasps for each object, but no such database exists. In this work we show how to automate the construction of a database consisting of several hands, thousands of objects, and hundreds of thousands of grasps. Using this database, we demonstrate a novel grasp planning algorithm that exploits geometric similarity between a 3D model and the objects in the database to synthesize form closure grasps. Our contributions are this algorithm, and the database itself, which we are releasing to the community as a tool for both grasp planning and benchmarking.
Corey Goldfeder, Matei T. Ciocarlie, Hao Dang, Pet