Quasi delay insensitive circuits are functionally independent of delays in gates and wires (except for some particular wires). Such asynchronous circuits offer high robustness but do not perform well to automatically synthesize and optimize. This paper presents a new methodology to model and synthesize data path QDI circuits. The model used to represent circuits is based on Multi-valued Decision Diagrams and allows obtaining QDI circuits with two-input gates. Optimization is achieved by applying a technology mapping algorithm with a library of asynchronous standard cells called TAL. This work is a part of the back-end of our synthesis flow from high level language. Throughout the paper, a digit-slice radix 4 ALU is used as an example to illustrate the methodology and show the results.